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Abstract

The volume integral equation formalism is used to derive and analyze specific criteria of applicability of the far-field

approximation in electromagnetic scattering by a finite three-dimensional object. In the case of wavelength-sized and larger

objects, this analysis leads to a natural subdivision of the entire external space into a near-field zone, a transition zone, and

a far-field zone. It is demonstrated that the general criteria of far-field scattering are consistent with the theory and practice

of T-matrix computations.
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1. Introduction

It is well known that in the so-called far-field zone of a fixed finite object, the propagation of the scattered
electromagnetic wave is away from the object [1]. Furthermore, the electric and magnetic field vectors vibrate
in the plane perpendicular to the propagation direction and their amplitudes decay inversely with distance
from the object. The tranversality of both the incident plane wave and the scattered outgoing spherical wave
allows one to introduce the concept of the amplitude scattering matrix [2] as well as to define the
corresponding sets of Stokes parameters and describe the response of a well-collimated polarization-sensitive
detector of light in terms of the 4� 4 so-called phase and extinction matrices [3].

These attractive features have led to the widespread use of the far-field approximation (FFA) [2–11] and
have made it a cornerstone of the microphysical approach to radiative transfer [12,13]. However, one must
always keep in mind that for an observation point to be in the far-field zone of an object its distance from the
object must satisfy certain inequalities. These inequalities were derived in [14], but their physical meaning and
practical implications were not analyzed. Hence the objective of this tutorial paper is to perform such an
analysis. We will accomplish this objective through a modified way of deriving the FFA formulas which will
make especially transparent the specific role of each far-field criterion.

In order to save space and avoid redundancy, we will take advantage of the on-line availability of [3] and
will use exactly the same terminology and notation.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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2. Far-field approximation

As in Chapter 2 of [3], we consider a finite scattering object in the form of an arbitrary body embedded in an
infinite, homogeneous, linear, isotropic, and nonabsorbing medium. The interior of the particle is assumed to
be filled with an isotropic, linear, and possibly inhomogeneous material (Fig. 1). We start off where Section 2.1
of [3] ends, subdivide the scattering object into a large number of elementary volume elements DV , and rewrite
Eq. (2.16) of [3] for an external observation point r in the following discrete form:

EscaðrÞ ¼
k2
1

4p
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i
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þ
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where the index i numbers the volume elements, Ei and mi are the electric field and relative refractive index
values, respectively, at the center of the ith volume element, ri ¼ jqij is the distance from the center of the ith
volume element to the observation point, qi ¼ r� ri is the vector connecting the center of the ith volume
element and the observation point, and ri is the radius-vector of the center of the ith volume element (Fig. 2).
Recall now that in spherical polar coordinates ðr; y;jÞ
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where the order of operator components relative to r̂, ĥ, and û in Eq. (2) is essential because the unit basis
vectors depend on y and j. The simplicity of these formulas makes it convenient to evaluate the contribution
of each volume element to the sum on the right-hand side of Eq. (1) by using a local coordinate system
originating at the center of this volume element and having the same orientation as the laboratory reference
O

Scattered spherical wave

Incident wave

Fig. 1. Schematic representation of the electromagnetic scattering problem. The unshaded exterior region VEXT is unbounded in all

directions, whereas the shaded area represents the interior region VINT.
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Fig. 2. Derivation of Eq. (5).
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frame. This is done by making the substitution r! qi for each new i. Recalling that

r � ðf aÞ ¼ fr � aþ a � rf

and

r
expð�ikrÞ

r
¼ �ik �

1

r

� �
expð�ikrÞ

r
r̂

and assuming that

k1ri � 1 for any i (4)

then yield

EscaðrÞ ¼
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1

4p
lim
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X
i

DV ðm2
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ri

ð I
2
�q̂i � q̂iÞ � Ei; r 2 VEXT, (5)

where q̂i ¼ qi=ri is the unit vector originating at the center of the ith volume element and directed towards the
observation point. Finally,

EscaðrÞ ¼
k2
1

4p

Z
V INT

dr0½m2ðr0Þ � 1�
expðik1jr� r0jÞ

jr� r0j
ð I
2
�q̂0 � q̂0Þ � Eðr0Þ; r 2 VEXT, (6)

where

q̂0 ¼
r� r0

jr� r0j
. (7)

Eq. (6) has two important implications. First, it shows that the scattered field at an external observation
point is a vector superposition of partial scattered fields (wavelets), which are created by infinitesimal volume
elements constituting the interior of the object. Second, it demonstrates that each wavelet is an outgoing
transverse spherical wave (Fig. 3). Indeed, the identity dyadic in spherical polar coordinates is given by

I
2
¼ r̂� r̂þ ĥ� ĥþ û� û.

Therefore, the dyadic factor

I
2
�q̂0 � q̂0
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Fig. 3. Spherical wavelets generated by infinitesimal volume elements centered at points i (dashed line) and j (dot-dashed line).
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in Eq. (6) ensures that each wavelet is transverse, i.e., the electric field vector of the wavelet at the observation
point is perpendicular to its propagation direction q̂0:

q̂0 � ð I
2
�q̂0 � q̂0Þ � Eðr0Þ ¼ 0. (8)

Furthermore, the electric field of the wavelet decays inversely with distance jr� r0j from the center of the
infinitesimal volume element.

Let us now assume that the origin of the laboratory coordinate system O is inside the scattering object (Figs.
1 and 4). Usually one is interested in calculating the scattered field in the so-called far-field zone of the entire
object. Specifically, assuming that the distance r from the origin to the observation point is much greater than
any linear dimension of the scatterer,

r� r0 for any r0 2 V INT, (9)

we have

I
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where r̂ ¼ r=r is the unit vector in the direction of r, Fig. 4. The last two terms on the right-hand side of Eq.
(11) can be neglected in computing the slowly varying denominator in the expression on the right-hand side of
Eq. (6), thereby yielding

1

jr� r0j
�

1

r
, (12)

but not in computing the rapidly oscillating factor expðik1jr� r0jÞ. Assuming, however, that

k1r
02

2r
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we finally obtain
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Fig. 4. Scattering in the far-field zone of the entire object.
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This remarkable formula is the main result of the FFA and demonstrates that the scattered electric field at a
large distance from the object behaves as a single outgoing transverse spherical wave centered at O and
propagating in the direction of the radial unit vector r̂. Indeed, the scattered field decays inversely with
distance r from the origin and

r̂ � EscaðrÞ ¼ 0. (15)

Thus, only the y- and j-component of the electric vector of the scattered field are non-zero. Eq. (14) can be
rewritten in the form

EscaðrÞ ¼
expðik1rÞ

r
Esca
1 ðr̂Þ; r̂ � Esca

1 ðr̂Þ ¼ 0, (16)

where the vector Esca
1 ðr̂Þ is independent of r and describes the angular distribution of the scattered radiation in

the far-field zone.
3. Criteria of the far-field approximation

Let a be the radius of the smallest circumscribing sphere of the scattering object centered at O. Then the
criteria (4), (9), and (13) of the FFA can be summarized as follows:

k1ðr� aÞ � 1, (17)

r� a or k1r� k1a; (18)
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Fig. 5. The individual spherical wavefronts generated by infinitesimal volume elements centered at points i (dashed curve) and j (dot-

dashed curve) nearly merge with increasing distance of the observation point from the scattering object and become locally

indistinguishable from the unified spherical wavefront centered at the common origin (solid curve). The respective propagation directions

at the observation point also become close and eventually coincide.
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r�
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2

2
or k1r�

k2
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2

2
. (19)

Inequality (17) means that the distance from any point inside the object to the observation point must be
much greater than the wavelength. This ensures that at the observation point, the partial field scattered by any
differential volume element develops into an outgoing spherical wavelet.

Inequality (18) requires the observation point to be located at a distance from the object much greater than
the object’s size. This ensures that when the partial wavelets generated by the elementary volume elements
constituting the object arrive at the observation point, they propagate in essentially the same scattering
direction, Fig. 5, and are equally attenuated by the factor 1/distance:

r� r0

jr� r0j
� r̂ and

1

jr� r0j
�

1

r
for any r0 2 V INT. (20)

The meaning of inequality (19) is a bit more subtle, but becomes clear from the inspection of Fig. 6, in which
the observation point is shown relative to the smallest circumscribing sphere of the object. The phase
difference between the straight path connecting the observation point and a point on the sphere surface and
the path connecting the observation point and the origin is given by

k1ðr
0 � rÞ �

k1a2

2r
� k1a cos B. (21)

The second term on the right-hand side of this expression is independent of r (for a fixed scattering direction),
whereas the variation of the first term with changing r is significant unless k1a

2=2r	 1. Therefore, we can
interpret the inequality (19) as the requirement that the observation point be so far from the scatterer that the
phase difference between the paths connecting the observation point and any two points of the scatterer
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Fig. 6. Interpretation of the inequality (19).

M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 100 (2006) 268–276274
becomes independent of r for any fixed scattering direction. As a consequence, the surfaces of constant phase
of the partial wavelets generated by the elementary volume elements constituting the object coincide locally
when they reach an observation point situated in the far-field zone, and the wavelets form a single outgoing
spherical wave (compare Figs. 3 and 5). This implies that the entire scatterer is effectively treated as a point-
like body located at the origin of the laboratory coordinate system.

In view of inequality (18), inequality (17) can be simplified:

k1r� 1. (22)

Furthermore, all three criteria of far-field scattering can be written as the following single inequality:

k1r� maxð1; 1
2

x2Þ, (23)

where x ¼ k1a is the dimensionless so-called size parameter of the object.

3. Discussion

It is remarkable that all three far-field criteria (17)–(19) are purely geometrical and do not involve the
particle refractive index. The relative importance of these criteria changes with particle size relative to the
wavelength. For particles much smaller than the wavelength ðk1a	 1Þ, inequality (17) is the most restrictive of
the three. When the size parameter k1a is of order unity, all three criteria are roughly equivalent. For particles
much greater than the wavelength ðk1a� 1Þ, inequality (19) becomes the most demanding and can ‘‘move’’
the far-field zone much farther from the particle than the other two inequalities.

For particles comparable to and greater than the incident wavelength, the above derivation and discussion
suggest the existence of three distinct zones (Fig. 7). In the far-field zone, all three criteria (17)–(19) are
satisfied and the total scattered field is a unified outgoing spherical wave. Each point of the transition zone
satisfies inequality (4) but not inequalities (18) and (19). Therefore, although the total scattered field is not a
unified spherical wave, it can still be represented as a superposition of outgoing spherical wavelets generated
by the elementary volume elements of the object. In the near-field zone, all three criteria (17)–(19) are violated,
and the total scattered field does not have a simple representation.
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Fig. 7. Near-field, transition, and far-field zones.
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For objects with sizes smaller than the wavelength, the transition zone is absent.
The far-field criteria (17)–(19) are consistent with the theory and practice of T-matrix computations. Indeed,

Eqs. (5.3), (C.30), and (C.31) of [3] imply that expression (5.9) for the amplitude of the far-zone electric field
Esca
1 and, thus, expression (5.10) for the scattering dyadic and expressions (5.11)–(5.14) for the elements of the

amplitude scattering matrix are valid provided that k1r� 1 and k1r� n2
max, where nmax is the maximal value

of the summation index n in Eq. (5.3). Extensive practical T-matrix computations for single-body and
aggregated scatterers suggest indeed that in order to achieve convergence for particles comparable to and
greater than the wavelength, nmax must be equal to or slightly exceed x, which leads to k1r� x2.

The above conclusion remains valid for the Lorenz–Mie theory since the latter is a particular case of the T-
matrix method.
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